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Abstract: The increasing temperature of the atmosphere, combined with the earth's surface temperature, 

will be the main factor in the global climate crisis. Since the second half of the 20th century, the rapid urbanisation 
of cities, combined with technological development, human wellbeing, and general population growth, has been 
directly linked to cities' economic development and sustainability. 

This research aims to analyse the correlation between the Normalised Difference Vegetation Index (NDVI) 
and Land Surface Temperature (LST) using Climate Engine (CE) tool and ArcGIS Pro GIS software. In addition, 
Landsat 5/7/8/9 Top of Atmosphere Reflectance Data was used over the period 2012 – 2017 for five cities in 
Bulgaria. Climate Engine is an online platform to process observation data for getting economic and environmental 
sustainability directions. The correlation from the above spatial research of Bulgarian cities indicates how to manage 
the UHI (Urban Heat Island). 

 
 
Introduction 
 

Air temperature increase in combination with Land Surface Temperature (LST) increase is two 
of the main factors of environmental crisis (Mustafa et al., 2020). Furthermore, the intensification of 
urbanisation combined with technological development and human well-being has been the most 
defining global challenge of the 21st century to ensure population needs and urban economic 
development (Rimal et al., 2018). 

As urban areas develop, heatwaves are trapped among tall and narrowly placed buildings, 
carbon emissions rise from anthropogenic and productive activities within cities (Ahmed Memon et al., 
2008) and urban vegetation decreases. Water demand becomes more intense in order to cover human 
needs, facing stressful thermal conditions and water urban plants (Takebayashi & Moriyama, 2012). As 
a result, regional temperatures are increased (Guha et al., 2018), and urban areas behave as Urban 
Heat Islands (UHI) (Sheng et al., 2017).  

UHI refers to the difference in air temperature between a city and its surrounding rural areas 
especially at night. When the sun goes down, surfaces stop receiving solar energy as long as they 
continue to radiate the heat stored during the day. Howard firstly observed the phenomenon of UHI in 
1833 (Oke, 1982) for the city of London (Mills, 2008) and after a large number of studies being made 
for different cities around the world (Aflaki et al., 2017; García, 2022; Papamanolis et al., 2015; Sarkar 
& de Ridder, 2011; Wang et al., 2019) in different time periods. Studying the urban head islands for 
mitigation, and its effects means more urban green spaces (Ouali et al., 2018), retrofitting buildings and 
urban spots such as squares, sidewalks with cool pavements (Battista et al., 2020), alerting communities 
when and where heatwaves are coming.  

Analytical studies have been carried for urban hot spots include analysis of remote sensing data 
from different sensors, data analysis from located temperature measurement stations or analysis by in 
situ measurements. In addition, in many studies, one way to approach the intensity of the phenomenon 
is to study the correlation LST with some land use/land cover (LU – LC) spectral indices (Espinoza-
Molina et al., 2022; Galodha & Gupta, 2021; García, 2022; Laosuwan & Sangpradit, 2012; Macarof & 
Statescu, 2017). 

Bulgarian urban areas, especially those in Sofia city, were distinguished for green spaces. 
Urban vegetation in the capital of Bulgaria covered 48,6% of the land cover with the Vitosha mountain 
in the southwest of the city center (Kopecka & Oťaheľ, 2016). Research for Sofia city has proved that 
there exists an essential heterogeneity because of different types of land cover. Temperature 
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measurements showed a different profile in the West-East and South-North directions. Sofia city is 
warmer than its neighboring rural areas by 8ο C and the higher land surface temperatures are near the 
city center (Yanev & Filchev, 2017).  

Another interesting attempt was made in Sofia using data from Unmanned Aerial Systems 
(UAS) data in combination with local climate zones (LCZs). It has been confirmed that as urban 
vegetation increased, surface temperatures decreased and as built-up areas increased, surface 
temperatures increased (Dimitrov et al., 2021). As a result, UHI intensity is related to land cover, green, 
water and built-up areas ((Nuruzzaman, 2015). Vegetation indices e.g. Normalized Difference 
Vegetation Index (NDVI), Difference Vegetation Index (DVI), Enhanced Vegetation Index (EVI) (Xue & 
Su, 2017) studies, evaluate plant growth and measure vegetation cover.  

NDVI is one of the most popular vegetation indices. It is an indicator of vegetation health based 
on how plants reflect the electromagnetic spectrum (Schinasi et al., 2018). In order to calculate NDVI 
values, we use vegetation absorption and reflection in the range of red and near – infrared (NIR) 
wavelengths.  
 

NDVI = 
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)⁄  

 
Values between -1 and 0 indicate dead plants or inorganic objects such as built-up areas and 

values for live plants range between 0 to 1 – with one being the healthiest (Sileos, Alexandridis, et al., 
2013).  
In the present study, the spatial distribution of LST and the correlation between LST and NDVI have 
been analyzed in inland and coastal cities.  

 
Study Area and Data 
 

LST and NDVI values were extracted, corresponding to the five most prominent cities of 
Bulgaria (Sofia, Plovdiv, Varna, Burgas, Ruse) according to the population distribution. Sofia is the 
capital city of Bulgaria and Plovdid is the second-largest city which stands out for its historical and 
geophysical character. Varna city is located in the north part of Bulgarian Black Sea Coast, and Burgas 
city is in the south.Finally, Ruse city is in northern Bulgaria on the South bank of the Danube.  

In the present study, the annual median of the LST through Climate Engine (CE) from the 
Landsat 5/7/8/9 Top of Atmosphere Reflectance Data at 30m for every year between 2012 and 2017 
over the Regions of Interest (ROI) were used. In addition, the annual median values of NDVI were 
calculated for the same ROIs and during comparable periods. 

 

 
 

Fig. 1. Study Area with selected ROIs 
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Methodology & Results 
 

The following methodology carries out a correlation analysis between the Land Surface 
Temperature (LST) and Normalized Difference Vegetation Index (NDVI) through Climate Engine (CE) 
and ArcGIS Pro. Climate Engine is a web application, based on cloud computing technology that 
provides ready-to-use remote sensing data for analysis, visualization and monitoring of environmental 
and climate change without storage and cost limitations (Huntington et al., 2017). ArcGIS Pro 3.0 was 
used to study the correlation between LST and NDVI values.  
 

 
 

Fig. 2. Methodology flow chart for the study 

 
According to NDVI temporal series shown in Fig. 3, a periodicity in NDVI values appears 

obvious. Comparing the Figure of NDVI values below with the Figure 4 of Land Surface Temperature 
(LST), we observe that the minimum and maximum values appeared at the same period as the 
corresponding NDVI minima and maxima. Figures 3 and 4 show the results corresponding to Burgas 
city. The conclusion is that a correlation between temperature and NDVI exists. Additionally considering 
the existing correlation of NDVI and LST we can distinguish that the minimum LST values correspond, 
more or less, to the minimum NDVI values. 

 

Fig. 3. Normalized Difference Vegetation Index (NDVI) time series for Burgas city  
over the five year period 2012-2017 
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Fig. 4. Land Surface Temperature (LST) time series for Burgas city over the five year period 2012-2017 

 

 
 

Fig. 5. Normalized Difference Vegetation Index (NDVI) time series for Plovdiv city  
over the five year period 2012-2017 

 

 
 

Fig. 6. Land Surface Temperature (LST) time series for Plovdiv city over the five year period 2012-2017 
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Fig. 7. Normalized Difference Vegetation Index (NDVI) time series for Ruse city over the five year period 2012-
2017 

 

 
 

Fig. 8. Land Surface Temperature (LST) time series for Ruse city over the five year period 2012-2017 
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Fig. 9. Normalized Difference Vegetation Index (NDVI) time series for Sofia city  
over the five year period 2012-2017 

 
 

 

Fig. 10. Land Surface Temperature (LST) time series for Sofia city over the five year period 2012-2017 
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Fig. 11. Normalized Difference Vegetation Index (NDVI) time series for Varna city  
over the five year period 2012-2017 

 

 
 

Fig. 12. Land Surface Temperature (LST) time series for Varna city over the five year period 2012-2017 

 
All the above Figures show that the NDVI values present a periodicity over the five years 2012-

2017. High NDVI values indicate the presence of green vegetation, especially in Sofia, where NDVI 
reach the value of 0.8. Conversely, the lowest NDVI values appear during the winter period.  

Concerning NASA’s Earth Observatory publication (https://earthobservatory.nasa.gov/features/ 
MeasuringVegetation/measuring_vegetation_2.php), negative values of NDVI indicate the non-
existence of vegetation. Furthermore, Faridatul & Ahmed (2020) found that urban areas presented NDVI 
values between 0 and 1. It is well known that urban areas contain various landcover, including 
vegetation. On the other hand, the absence of vegetation, provides NDVI values below 0. 

In conclusion, trying to find the correlation between the corresponding actual vegetation NDVI 
values and LST values in the selected five Areas Of Interest (AOI),and, of course according to the 
previous remarks, we can exclude all NDVI negative values.  

Consequently, the Figures below showing the correlation between NDVI and LST values in our 
Regions Of Interest indicate more or less an existing correlation between NDVI and LST in all our ROIs.  
 
 
 

https://earthobservatory.nasa.gov/features/%20MeasuringVegetation/measuring_vegetation_2.php
https://earthobservatory.nasa.gov/features/%20MeasuringVegetation/measuring_vegetation_2.php
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Fig. 13. Interface of ArcGIS Pro for estimate the correlation between NDVI and LST 

 

 
 

Fig. 14. Bi-plot of LST and NDVI for Burgas city 
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Fig. 15. Bi-plot of LST and NDVI for Plovdiv city 

 

 
 

Fig. 16. Bi-plot of LST and NDVI for Ruse city 
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Fig. 17. Bi-plot of LST and NDVI for Sofia city 

 

 
 

Fig. 18. Bi-plot of LST and NDVI for Varna city 

 
The relationship between LST and NDVI values is linear. All cities’ LST measurements 

negatively correlate with NDVI values (-0.7 and -0.5). 
For example, as shown in Figure 17, the bi-plot of NDVI and LST variables for Sofia city 

indicates an existing negative correlation schematically. Indeed, the determination index’s value is equal 
to 0.6, which corresponds to a negative correlation value equal to - 0,77459.  
 

Conclusion 
 

The present research finds negative correlations between LST values and vegetation index 
values. Concluding the stronger the NDVI values are, the fewer LST values become. Referring to our 
ROIs, we can approximately delimit urban green spaces as having the highest NDVI values inside urban 
areas. On the contrary, it is not probable that Urban Heat Islands contain urban green areas. 
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